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Problem Set 1

This first problem set is designed to help you gain a familiarity with set theory and basic proof 
techniques.  By the time you're done, you should have a much stronger sense of how to rigorously 
establish mathematical results.

Start this problem set early.  It contains eleven problems (one checkpoint question, eight graded 
problems, one survey question, and one optional extra credit problem), several of which require a 
fair amount of thought.  I would suggest reading through this problem set at least once as soon as 
you get it to get a sense of what it covers.

As much as you possibly can, please try to work on this problem set individually.  If you work too 
much in a group, you'll miss the chance to strengthen your mathematical muscles.*  That said, if 
you do work with others, please be sure to cite who you are working with and on what problems. 
For more details, see the section on the Stanford Honor Code in the course information handout.

In any question that asks for a proof, you  must provide a rigorous mathematical proof.  You 
cannot draw a picture or argue by intuition.  You should, at the very least, state what type of proof 
you are using, and (if proceeding by contradiction or contrapositive) state exactly what it is that 
you are trying to show.  If we specify that a proof must be done a certain way, you must use that  
particular proof technique; otherwise you may prove the result however you wish.

As always, please feel free to drop by office hours or send us emails if you have any questions. 
We'd be happy to help out.

This problem set has 150 possible points.  It is weighted at 6% of your total grade.  The earlier 
questions serve as a warm-up for the later problems, so the difficulty of the problems increases 
over the course of this problem set.

Good luck, and have fun!

Checkpoint Questions Due Monday, October 1 at 2:15 PM
Remaining Questions Due Friday, October 5 at 2:15 PM

* Trust me, they exist. ☺
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Write your solutions to the following problems and submit them by Monday, October 1st at the 
start of class.  These problems will be graded based on whether or not you submit it, rather than 
the correctness of your solutions.  We will try to get these problems returned to you with feedback 
on your proof style this Wednesday, October 3rd.  Submission instructions are on the last page of 
this problem set.

Please make the best effort you can when solving these problems.  We want the feedback we 
give you on your solutions to be as useful as possible, so the more time and effort you put into 
them, the better we'll be able to comment on your proof style and technique.

Checkpoint Question: Multiples of Three (25 Points if Submitted)

A number is a  multiple of three iff it  can be written as 3k for some integer  k.   A number is 
congruent to one modulo three iff it can be written as 3k + 1 for some integer k, and a number is 
congruent to two modulo three iff it can be written as 3k + 2 for some integer k.  For each integer 
n, exactly one of the following is true (you don't need to prove this):

• n is a multiple of three.

• n is congruent to one modulo three.

• n is congruent to two modulo three.

Suppose that we want to prove this result:

n is a multiple of three iff n2 is a multiple of three.

To do this, we will prove the following two statements:

If n is a multiple of three, then n2 is a multiple of three.

If n2 is a multiple of three, then n is a multiple of three.

i. Prove the first of these statements with a direct proof.

ii. Prove the second of these statements using the contrapositive.  Make sure that you state 
the contrapositive of the statement explicitly before you attempt to prove it.

iii. Prove, by contradiction, that √3  is irrational.  Make sure that you explicitly state what as-
sumption you are making before you derive a contradiction from it.  Recall from lecture 
that a rational number is one that can be written as p / q for integers p and q where q ≠ 0 
and p and q have no common divisor other than ±1.
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The remainder of these problems should be completed and returned by Friday, October 5 at the 
start of class.

Problem One: Elementary Set Theory (4 points)

For the purposes of this problem, suppose that we are dealing with the following sets:

    A = { 1, 2, 3, 4 }

    B = { 2, 2, 2, 1, 4, 3 }

    C = { 1, 3 }

    D = { 2, 3, 4 }

    E = { x | x ∈ ℕ and x is even }

For each of the following, is the claim true or false?  Explain why.  You do not need to prove your 
assertions.

i. A = B.

ii. C Δ D = C

iii. |D| > |A|

iv. E ∩ D = C ∩ D

v. C  ∈ A.

vi. C  ⊆ A.

Problem Two: Two Is Irrational? (12 points)

In lecture, we proved that √2  is irrational, and in the checkpoint problem you proved that √3  is 
irrational.  Below is a purported proof that √4  is irrational:

Theorem: √4 is irrational.

Proof: By contradiction; assume that √4  is rational.  Then there must exist inte-
gers p and q such that q ≠ 0, p / q = √4 , and p and q have no common fac-
tors other than 1 and -1.

Since p / q = √4 , we have that p2 / q2 = 4, so p2 = 4q2.  This means that p 
is a multiple of four, so p = 4n for some natural number n.

Since 4q2 = p2 and p = 4n, this means that 4q2 = (4n)2 = 16n2, so q2 = 4n2. 
This means that q is a multiple of four as well.  But since both p and q are 
multiples of four, this means that  p and  q share a common divisor other 
than 1 and -1, contradicting our initial assumption.  We have reached a 
contradiction, so our assumption must have been incorrect.  Thus √4  is 
irrational. ■

This proof has to be wrong, because  √4  = 2 =  2/1, which is indeed rational!  Specifically, this 
proof contains two invalid steps that let it claim that √4  is irrational.  What are the two invalid 
steps?  Why doesn't this error occur in the similar proofs that √2  and √3  are irrational?
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Problem Three: Properties of Sets (20 points)

Below are four claims about sets.  For each statement, if it is always true, prove it.  If it is always 
false,  prove  that  it  is  always false.   If  it  is  sometimes  true  and sometimes  false,  provide  an 
example for which it is true and an example for which it is false and briefly explain why your 
examples are correct.

To prove that two sets are equal, remember that you need to show that any element of the first set 
must also be an element of the second set and vice versa.  Recall that this is equivalent to showing 
that the two sets are subsets of one another.  It is not sufficient to use Venn diagrams or any other 
informal reasoning here.  You need to formally prove each result.

i. If A  ∈ B and B  ∈ C, then A  ∈ C.

ii. If (℘ A) = (℘ B), then A = B.

iii. (A – B)  ∪ B = A.

iv. A ∩ (B – A) ≠ Ø.

Problem Four: Ascending Sequences (12 points)

Suppose that you have an infinite sequence of real numbers  x0,  x1, …,  xn, … such that for any 
natural numbers i and j, if i < j, then xi < xj.  Such a sequence is called an ascending sequence.  For 
example, the series of natural numbers 0, 1, 2, 3, 4, … is such a sequence, as is the series 1, 2, 4,  
8, 16, 32, … of powers of two.

Suppose that you have some number  z that is sandwiched in-between two of the terms in the 
series; that is, there is some j such that xj < z < xj+1.  Prove that z does not appear anywhere in the 
series by showing that there is no i such that xi = z.

Problem Five: Pythagorean Triples (16 points)

A Pythagorean triple is a triple (a, b, c) of positive natural numbers such that a2 + b2 = c2.  For 
example, (3, 4, 5) is a Pythagorean triple, since 32 + 42 = 9 + 16 = 25 = 52.  Similarly, (5, 12, 13) is 
a Pythagorean triple, as is (8, 15, 17).

Prove that if (a, b, c) is a Pythagorean triple, then (a + 1, b + 1, c + 1) is not a Pythagorean triple.
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Problem Six: Modular Arithmetic (28 points)

Many programming  languages  support  a  modulus  operator  (in  many languages,  using  the  % 
operator),  which gives the remainder when one number is  divided by another.   For example,
5 % 3 = 2, since three divides five with remainder two.  Similarly, 17 % 6 = 5.

Many different numbers yield the same remainder when divided by some number.  For example,  
the numbers 2, 5, 8, 11, 14, and 17, all leave a remainder of two when divided by three, while the  
numbers 1, 12, 23, 34, and 45 all leave a remainder of one when divided by eleven.  To formalize 
this relationship between numbers, we'll introduce a relation ≡k that, intuitively, indicates that two 
numbers leave the same remainder when divided by k.  For example, we'd say that 1 ≡11 12 and 
that 8 ≡3 11.

Formally, we'll define ≡k as follows.  For any integer k, define the relation ≡k as follows:

a ≡k b iff there exists an integer q such that a – b = kq

For example, 7 ≡3 4, because 7 – 4 = 3 = 3·1, and 13 ≡4 5 because 13 – 5 = 8 = 4·2.  If x ≡k y, we 
say that x is congruent to y modulo k, hence the terminology in the checkpoint problem.  In this 
problem, you will prove several properties of modular congruence.

i. Prove that for any integer x and any integer k, x ≡k x.

ii. Prove that for any integers x and y and any integer k, that if x ≡k y, then y ≡k x.

iii. Prove that for any integers x, y, and z and any integer k, that if x ≡k y and y ≡k z, then x ≡k z.

The  three  properties  you have  just  proven  show that  modular  congruence  is  an  equivalence 
relation.   Equivalence  relations  are  important  throughout  mathematics,  and  we'll  see  more 
examples of them later in the quarter.

Modular congruence plays well with arithmetic:

iv. Prove that for any integers w, x, y, z, and k, that if x ≡k w and y ≡k z, then x + y ≡k w + z.

v. Prove that for any integers w, x, y, z, and k, that if x ≡k w and y ≡k z, then xy ≡k wz.

These last two results are important for how computers do arithmetic.  Computers can't actually 
store arbitrarily large integers, because computers are inherently finite.  Instead, when storing inte-
gers, computers typically represent them modulo some large power of two, such as 232 or 264.  For 
example, in C or C++, the unsigned int type often represents an integer modulo 232, and the 
unsigned long type often represents an integer modulo 264.   The result  that  you have just 
proven shows that if the computer adds or multiplies numbers, the result will at least be correct 
modulo the large power of two, even if the actual result is too large to hold in memory.
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Problem Seven: Venn Diagrams (8 Points)

In our first lecture, we saw the following picture, which represents a Venn diagram for four sets:

A

B C

D

This picture is probably not what you would have initially expected.  It might seem more reason-
able to draw the Venn diagram this way:

A B

C D
However, the way that these circles overlap is not sufficient to show all possible ways that four 
different sets can overlap.  Come up with four sets A, B, C, and D such that there is no way to ac-
curately represent the overlap of those four sets with the second Venn diagram, and briefly explain 
why your sets have this property.
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Problem Eight: The Quantum Frog (20 Points)

Imagine an infinitely long sequence of squares, such as below:

… …

One of these squares contains a frog, and another square contains a fly:

… …

For simplicity, let's number all of the (infinitely many) squares by assigning each an integer.  We'll 
say that the frog starts in position 0, and will assign positive integers to the squares to the right of 
the frog and negative numbers to the squares to the left of the frog.  For example:

… …

-1 0 1 2 3 54 6 87

Now this frog is a very special kind of frog called a quantum frog.  The quantum frog can hop 
across the squares forward and backward, but can only make jumps of two different lengths: 3 and 
7.  For example, to get to square five to eat the fly, the frog might might jump forward seven 
squares to square 7, forward seven squares again to square 14, then back three squares three times  
to squares 11, 8, and (finally) 5.

i. Prove that, starting at position 0, the quantum frog can move to any other square using 
only jumps of length 3 and 7.

Suppose that this quantum frog is very concerned about catching the fly as early as possible (this 
is a hungry quantum frog!) and wants to minimize the number of jumps she has to make to get 
from her starting point to the fly.  All jumps take the same amount of time (this is, after all, a  
quantum frog!), so all the frog cares about is the total number of jumps made.  We'll say that a 
series of jumps from square 0 to square  k is  optimal iff there is no series of fewer jumps that, 
starting from square 0, also arrives at square k.

ii. Prove that in an optimal series of jumps from square 0 to square k, all jumps of the same 
distance must be made in the same direction.  That is, all of the frog's jumps of distance 3  
must be in the same direction and all of the frog's jumps of distance 7 must be in the same 
direction (though these two directions don't have to be the same).

iii. Prove that in an optimal series of jumps from square 0 to square k, the frog can never use 
jumps of size three more than six times.

Your results from (i), (ii), and (iii) can be used to devise a very efficient algorithm for finding the 
shortest number of hops required.  Since you know that there can't be more than six jumps of size 
three and that all  those jumps have to go in the same direction, you can just check, for each 
possible set of up to six jumps in each direction, how many remaining seven-hop jumps would be 
necessary.  The minimum over all these options is the shortest sequence of jumps.
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Problem Nine: Course Feedback (5 Points)

We want this course to be as good as it can be, and we'd appreciate your feedback on how we're 
doing.  For a free five points, please answer the following questions.  We'll give you full credit no 
matter what you write, as long as you write something.

i. How hard did you find this problem set?  How long did it take you to finish?  Does that 
seem unreasonably difficult or time-consuming for a five-unit class?

ii. Did you attend Monday's problem session?  If so, did you find it useful?

iii. Did you read the online course notes?  If so, did you find them useful?

iv. How is the pace of this course so far?  Too slow?  Too fast?  Just right?

v. Is there anything in particular we could do better?  Is there anything in particular that you 
think we're doing well?

Submission instructions

There are three ways to submit this assignment:

1. Hand in a physical copy of your answers at the start of class.  This is probably the easiest 
way to submit if you are on campus.

2. Submit a physical copy of your answers in the filing cabinet in the open space near the 
handout hangout in the Gates building.  If you haven't been there before, it's right inside 
the entrance labeled “Stanford Engineering Venture Fund Laboratories.”  There will be a 
clearly-labeled filing cabinet where you can submit your solutions.

3. Send an email  with an electronic copy of your answers to the submission mailing list 
(cs103-aut1213-submissions@lists.stanford.edu)  with  the  string  “[PS1]”  in  the  subject 
line.

Extra Credit Problem: The Divisibility Game (5 Points Extra Credit)

Consider the following game played by two players.  Someone picks a positive natural number n, 
then writes out n, along with all natural numbers that divide n (including n itself).  The first player 
then picks one of the divisors, then crosses out all of the numbers that are divisible by that num-
ber.  Players cannot choose numbers that have already been crossed out.  Whenever a player picks 
the number 1, they lose the game.  As an example, consider n = 24.  We write out the divisors:

1  2  3  4  6  8  12  24

Suppose that Player 1 chooses 6.  This leaves

1  2  3  4  6  8  12  24

If Player 2 now picks 2, this leaves

1  2  3  4  6  8  12  24

Player 1 should now pick 3:

1  2  3  4  6  8  12  24

And now Player 2 loses, because he is forced to pick 1.

Prove that for any positive number n other than 1, the first player can always win the game.
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